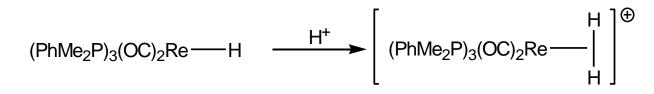
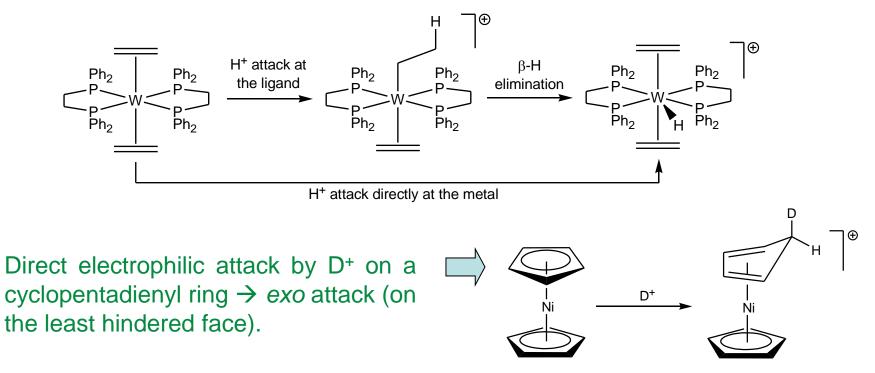
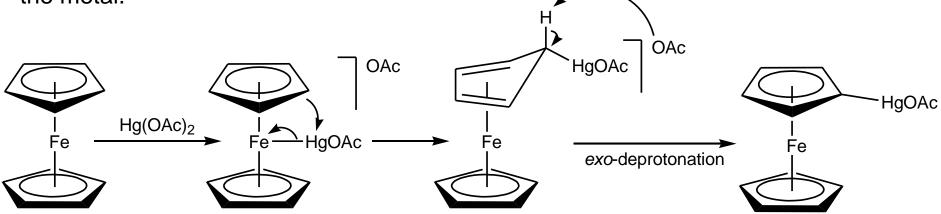

Oxidative addition by S_N2 or lonic mechanisms involves electrophilic attack on the metal as the first step (see below):

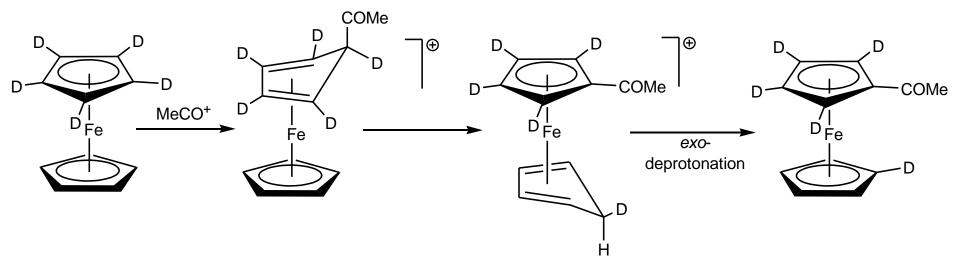
 If the 2nd step doesn't take place, this process is called electrophilic addition rather than oxidative addition:



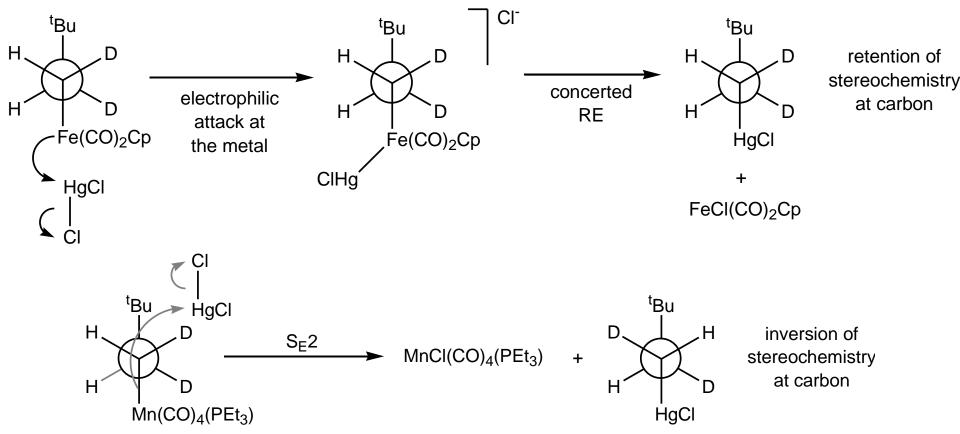


Electrophilic addition of other zero-electron donor ligands (*e.g.* AIR₃ or BR₃) at the metal can also occur. However, the formation of stable complexes such as that shown below is extremely rare.

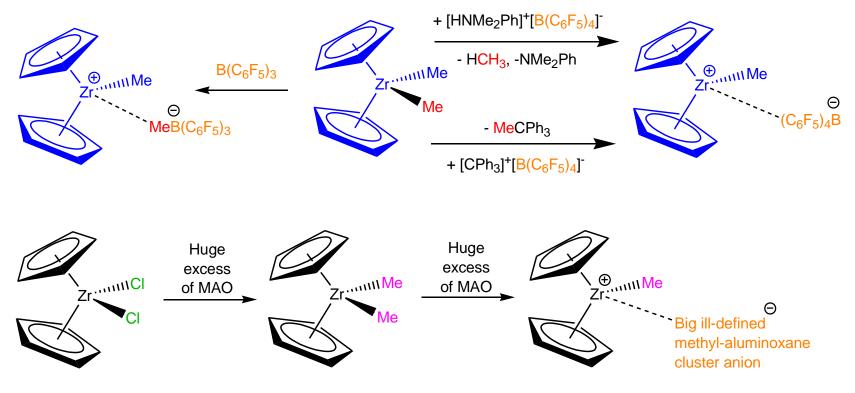

Protonation of a metal-hydride to give a dihydrogen complex:


 Protonation of an alkene complex. For the example shown below, initial protonation occurs at the ligand and at the metal (2 competing pathways).

• Electrophilic attack {by soft $Hg(OAc)_2$ } on a cyclopentadienyl ring \rightarrow initial attack at the metal.


• Electrophilic attack {by hard "COMe+"} on a cyclopentadienyl ring \rightarrow initial attack at the ligand (the acetyl cation attacks both the C₅D₅⁻ and the C₅H₅⁻ rings, but only attack on the former is shown).

- Abstraction of alkyl groups (alkides) is most common
- Can occur by a wide variety of different mechanisms:

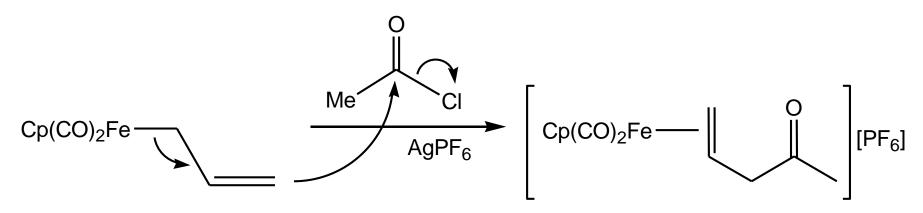

TM alkyls are often cleaved from the metal using X₂ (Cl₂, Br₂, I₂), H₂O, HX or HgX₂.

 As with Li–R or BrMg–R, M–R bonds in electropositive early TM complexes (e.g. Sc^{III}, Zr^{IV}, Ta^V) are readily cleaved by H₂O. By contrast, late transition metal alkyl complexes are often stable to water, so stronger acids and more vigerous conditions may be required.

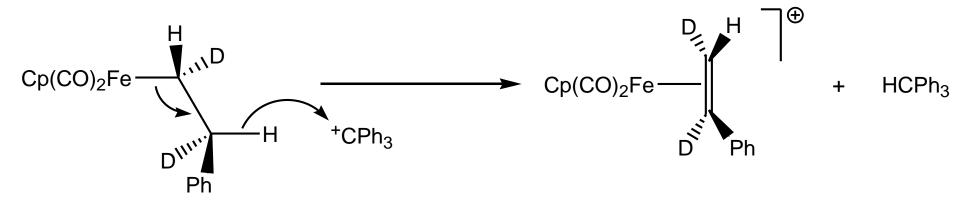
 $CpFe(PMe_3)_2(Me) + HO_2CCF_3 \rightarrow CpFe(PMe_3)_2(O_2CCF_3) + CH_4$

- While X₂, H₂O, HX or HgX₂ can be used to effect electrophilic abstraction, the alkyl group is always replaced by another nucleophile (X⁻ or OH⁻).
- By contrast, the electrophiles [CPh₃]⁺[B(C₆F₅)₄]⁻, B(C₆F₅)₃ or [HNMe₂Ph]⁺[B(C₆F₅)₄]⁻ are often used to remove an alkyide or hydride, leaving behind a coordinatively and electronically unsaturated, positively charged complex (generally highly reactive).

 $MAO = (MeAIO)_n = partly hydrolyzed AIMe_3 = usually used in 1000x excess.$ Thought to be composed of a range of large aluminoxane clusters as well as remaining AIMe₃.


WEAKLY-COORDINATING ANIONS (WCA)

<u>Weakly Coordinating Anions</u> - for an excellent review see I. Krossing, Noncoordinating Anions - Fact or Fiction? - A Survey of Likely Candidates, *Angew. Chem. Int. Ed.*, **2004**, *43*, 2066-2090.


Generation	Anions	Properties
G1	Picrate $(o-C_6H_2(NO_2)_3-2,4,6)$ Perchlorate (ClO_4^-) Triflate $(OSO_2CF_3^-)$	Not very "non-coordinating" by modern standards. Picrates and perchlorates are also explosive.
G2	$BF_{4}^{-}, PF_{6}^{-}, AsF_{6}^{-}, SbF_{6}^{-}$ $Sb_{2}F_{11}^{-}$	Not bad, but often a bit too reactive (prone to giving up F ⁻)
G3	$B(C_{6}F_{5})_{4}^{-}$ $B\{C_{6}H_{3}(CF_{3})_{2}^{-}3,5\}_{4}^{-}$ $CRB_{11}H_{5}Br_{6}^{-} (a \ closo \ carborane)$ $Sb(OTeF_{5})_{6}^{-}$ $AI\{OC(CF_{3})_{3}\}_{4}^{-} \ etc.$	Excellent WCAs – very unreactive and non-coordinating. They have allowed the preparation of extremely reactive species such as: Cp_2ZrMe^+ , CH_3^+ , $SiMes_3^+$, $H(OEt_2)_2^+$, CCl_3^+ , ClF_6^+ , $Xe(OTeF_5)^+$, $[Cu(CO)_4]^+$, $[Pt(CO)_4]^{2+}$ etc.

Other electrophilic abstraction reactions

 Conjugated substituents such as allyl groups can be removed by electrophilic attack at positions further away from the metal:

• Strong electrophiles can also abstract a substituent from the β -carbon:

Other electrophilic abstraction reactions

• Strong electrophiles can also abstract a substituent from the α -carbon:

$$Cp(CO)_{2}(PMe_{3})Mo - CH_{2}OMe \xrightarrow{+ CPh_{3}^{+}} \left[Cp(CO)_{2}(PMe_{3})Mo - HCPh_{3}^{+} \right]^{\textcircled{H}} OMe \xrightarrow{H} OMe \xrightarrow{H}$$